Finding the user’s current region using RegionInfo in .NET C#

The CultureInfo object helps a lot in finding information about the user’s current culture. However, on occasion it may not be enough and you need to find out more about that user’s regional characteristics. You can easily retrieve a RegionInfo object from CultureInfo which will hold information about a particular country or region.

You can find the current region in two ways from CultureInfo:

Read more of this post

Getting the byte array of a string depending on Encoding in C# .NET

You can take any string in C# and view its byte array data depending on the Encoding type. You can get hold of the encoding type using the Encoding.GetEncoding method. Some frequently used code pages have their short-cuts:

  • Encoding.ASCII
  • Encoding.BigEndianUnicode
  • Encoding.Unicode – this is UTF16
  • Encoding.UTF7
  • Encoding.UTF32
  • Encoding.UTF8

Read more of this post

Using DateTimeFormatInfo to localise date and time in .NET C#

Every programmer loves working with dates and time, right? Whether or not you like it it is inevitable to show the dates in a format that the viewer understands. You should not show dates presented according to the US format in Japan and vice versa.

The DateTimeFormatInfo class includes a range of useful properties to localise date and time. The entry point to the DateTimeFormatInfo class is CultureInfo. E.g. if you’d like to format a date according to various cultures – Swedish, Hungarian and German – then you can do it as follows:

Read more of this post

Finding the current culture settings using the CultureInfo class in .NET C#

Finding the the culture settings – the locale – of a thread is straightforward in .NET:

CultureInfo cultureInfo = Thread.CurrentThread.CurrentCulture;

We extract the current culture from the current thread. The CultureInfo class holds a number of properties to extract information from it. Examples:

string cultureName = cultureInfo.Name;
string cultureDisplayName = cultureInfo.DisplayName;
string nativeName = cultureInfo.NativeName;
string englishName = cultureInfo.EnglishName;
string cultureAbbreviation = cultureInfo.TwoLetterISOLanguageName;

As my computer is set to run with Swedish settings I got the following values from top to bottom:

Read more of this post

Comparing strings using the CompareInfo class in .NET C#

It’s important to be aware of the cultural settings in a globalised application when comparing strings. The CompareInfo class and the CompareOptions enumeration provide a useful way to compare strings based on specific cultures.

One way to get hold of the CompareInfo class belonging to a specific culture is through the CultureInfo class:

CultureInfo swedishCulture = new CultureInfo("sv-SE");
CompareInfo swedishCompareInfo = swedishCulture.CompareInfo;

CultureInfo hungarianCulture = new CultureInfo("hu-HU");
CompareInfo hungarianCompareInfo = hungarianCulture.CompareInfo;

CultureInfo germanCulture = new CultureInfo("de-DE");
CompareInfo germanCompareInfo = germanCulture.CompareInfo;

The CompareInfo object has a Compare method which returns 0 if the strings are equal, -1 if the first string is less than the second and 1 if the opposite is the case. The following comparison of two German strings returns -1 as by default the comparison is case-sensitive:

int comparison = germanCompareInfo.Compare("mädchen", "Mädchen");

This is where the CompareOptions enumeration proves useful. Here are the possible values:

  • IgnoreCase: make the comparison case-insensitive
  • IgnoreNonSpace: ignore diacritics, or officially non-spacing combining characters in Unicode. Example: “Madchen” will be equal to “Mädchen” with this flag
  • IgnoreSymbols: ignore symbols, like white-space, #, $, % etc. “Mädch$en” and “M#ädchen” will be considered equal with this flag
  • IgnoreKana and IgnoreWidth: concern mostly the Japanese language
  • None: the default value if the basic overload of Compare is called
  • Ordinal: quick but culture-insensitive comparison based on the Unicode value of each character
  • OrdinalIgnoreCase: same as Ordinal but the comparison is also case-insensitive
  • StringSort: use a sort algorithm where non-alphanumeric symbols, such as ‘-‘ come before the alphanumeric characters

Read all posts related to Globalisation in .NET here.

Using NumberStyles to parse numbers in C# .NET Part 3

In the previous post we looked at some more values in the NumberStyles enumeration. In this finishing post we’ll look at some more compact enumeration values and how you can pass in your own number format provider for customised and culture-independent solutions.

We’ve seen that you can combine the NumberStyles enumeration values like here:

string rawNumber = "$(14)";
int parsedNumber = int.Parse(rawNumber, NumberStyles.AllowParentheses | NumberStyles.AllowCurrencySymbol);

Read more of this post

Using NumberStyles to parse numbers in C# .NET Part 2

In the previous post we looked at some basic usage of the NumberStyles enumeration. The enumeration allows to parse other representations of numeric values.

Occasionally negative numbers are shown with a trailing negative sign like this: “13-“. There’s a solution for that:

string number = "13-";
int parsed = int.Parse(number, NumberStyles.AllowTrailingSign);

“parsed” will be -13 as expected.

Read more of this post


A great site

iReadable { }

.NET Tips & Tricks

Robin Sedlaczek's Blog

Developer on Microsoft Technologies

HarsH ReaLiTy

A Good Blog is Hard to Find

Softwarearchitektur in der Praxis

Wissenswertes zu Webentwicklung, Domain-Driven Design und Microservices

the software architecture

thoughts, ideas, diagrams,enterprise code, design pattern , solution designs

Technology Talks

on Microsoft technologies, Web, Android and others

Software Engineering

Web development

Disparate Opinions

Various tidbits

chsakell's Blog

Anything around ASP.NET MVC,WEB API, WCF, Entity Framework & AngularJS

Cyber Matters

Bite-size insight on Cyber Security for the not too technical.

Guru N Guns's

OneSolution To dOTnET.

Johnny Zraiby

Measuring programming progress by lines of code is like measuring aircraft building progress by weight.

%d bloggers like this: